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ABSTRACT

Grain Boundaries (GBs) have a strong influence on the elasto-plastic behavior of poly-

crystals by affecting the transmission of dislocations across them. The inhibition of dis-

location transmission across the GBs results in pile-up of dislocations which can develop

additional resistances to slip leading to size dependent elasto-plastic response of poly-

crystals. In this work, we propose a diffused interface based non-local Crystal Plasticity

(CP) model to capture the GB micro-mechanics and its effect on the elasto-plastic be-

havior. The model introduces a finitely thick grain boundary region incorporating the

properties of all the adjoining grains. The GB model is based on penalising the slip rate

on the slip systems of single crystals in the GB region with an extra activation energy

term. The energy penalty is based on minimizing the remnant dislocation line on GB

for the incoming and outgoing slip systems. Moreover, the energy penalty is modelled

to evolve with slip accumulation to account for the saturation of remnant dislocations on

GB. Owing to the non-uniformity of plastic flow in the GB regions, the deformation be-

havior becomes heterogeneous and results in the formation of Geometrically Necessary

Dislocations (GNDs). The GNDs are incorporated in the CP model in addition to the

Statistically Stored Dislocations (SSDs) which render the model size dependent.

The model has been implemented in a CP Finite Element Method (FEM) code and

used to analyze the quasi-static deformation behavior of two dimensional polycrystal do-

mains subjected to uni-axial tensile strain. The simulation results show that the model is

able to capture the Hall-Petch behavior in polycrystals. The effect of misorientation of

grains on Hall-Petch factor is also verified. The computational results are discussed and

compared with experimental observations.
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CHAPTER 1

Introduction

The micro-mechanical analysis of polycrystalline aggregates plays a crucial role in under-

standing of materials. The trend of product miniaturization and need for the development

of high strength metallic alloys has motivated researchers over last few decades to de-

velop better simulation models that can reduce the material design time and number of

experiments. The plastic deformation in metallic alloys is mainly caused by the motion of

dislocations under the effect of applied shear stress when it reaches a critical value termed

as critical resolved shear stress. Any obstructions offered to the motion of these disloca-

tions leads to strengthening of the alloys. The slipping of dislocations is preferred on some

specific planes (having highest planer density) and in specific directions (having highest

linear density), collectively known as slip systems. It makes the local plastic deformation

mechanism of individual crystals anisotropic. The traditional phenomenological plastic-

ity models such as J2 plasticity theory, an isotropic plasticity model, cannot account for

the anisotropic and heterogeneous nature of microscale deformation. Whereas, in crystal

plasticity theory that is widely used for analysing deformation mechanism at mesoscales,

the very inhomogeneous anisotropic behaviour of plasticity is introduced into the plastic

deformation tensors by incorporating the preferred slip directions and planes.

The micro-structure of metallic alloys consist of randomly orientated grains of differ-

ent sizes and the interfaces separating them termed as grain boundaries (GBs). To study

the polycrystalline plasticity, Taylor [1] first proposed a fully constrained model for rela-

tionship between texture evolution and crystallographic slip. Study of texture evolution

in metal forming operations has been studied and validated by Asaro and Needleman [2]

and Harren et al. [3] using the Taylor-type polycrystal model. In his approach, based on

the assumption that the local deformation of each grain matches with the global deforma-

tion, the compatibility condition in the polycrystal and the equilibrium conditions in each

grain are trivially satisfied. However, the equilibrium condition between the neighbouring
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grains is violated that yields a stiffer response. To address the inherent shortcomings of

Taylor’s model, self-consistent scheme was developed by Kroner’s [4] and Budiansky et

al. [5]. In this class of models, each grain of a polycrystal is treated as an inclusion within

the matrix of all surrounding grains having a average response. Variants of these models

were also developed by relaxing some of the strain constraints [6; 7] that up-to certain ex-

tent of accuracy can predict mechanical behaviour and texture evolution. However, these

conventional models can only provide a reasonable estimate of the effective response of

a polycrystal due to deformation of underlying single crystals and they fail to capture the

inter-granular variations of state. Therefore, these models are mostly usable for captur-

ing texture evolution during metal forming processes or any other macroscopic response

where the intergranular variations can be ignored. To capture these variations, Crystal

Plasticity based Finite Element Method (CPFEM) has received significant attention. A

review article by D. Raabe et al. [8] presents a wide range of applications where CPFEM

has been successfully used. Most of the CPFEM studies of polycrystal mechanics use

rather simple constitutive formulations where flow and hardening rule are expressed as

power laws [9]. Although these power law descriptions are useful simplifications of the

visco-plastic response of polycrystals, under dynamic loading conditions and at simula-

tion scales that can exhibit size effects, they reveal some disadvantages demanding for

the development of better constitutive laws to model anisotropic response of polycrystals

[10].

GBs predominantly govern the mechanical properties of polycrystalline materials by

modifying the deformation mechanism in two ways. First, they lead to the formation of

dislocation pile-ups which cause an increase in the critical resolved shear stress for fur-

ther dislocation slip and, thus, leads to the well known Hall-Petch behaviour [11; 12].

Second, they promote heterogeneous deformation of single crystals within the polycrys-

tal [13; 14; 15]. The GB micro-mechanics is important to understand in both the cases to

model mechanical response of polycrystals. The non-homogeneous plastic deformation

stimulated by GBs leads to development of strain and orientation gradients. Hosson et al.

have experimentally verified the GB induced hardness gradient during nano-indentation

in BCC metals [16]. The development of strain gradients during deformation can lead
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to the accumulation of Geometrically Necessary Dislocations (GNDs) in addition to the

Statistically Stored Dislocations (SSDs) which mainly accounts for the statistically aver-

aged homogeneous deformation within the single crystal [17]. The SSDs mainly evolve

in the grain interior region as a result of less obstructed and more intensive plastic flow

in that region, while the GNDs are more concentrated near GBs because of the lattice

mismatch between neighbouring grains [18]. Moreover, the local constitutive models

should be extended to non-local ones, which can consider the interplay between texture

and dislocation evolution on the basis of different behavior of neighboring material points.

Since local crystalline orientation gradients are necessarily associated with the storage of

GNDs, it is an obvious requirement that a non-local constitutive model should be built

based on dislocation densities rather than on empirical hardening functions. S.Ghosh et

al. have suggested a coupled equation for the evolution of SSDs and GNDs in which the

GNDs are evaluated as a function of Nye’s dislocation tensor that is evaluated from the

curl of plastic deformation tensor (closure failure) [19]. The Nye’s dislocation tensor can

be used to express the constraints imposed on a material point by its neighbourhood. The

inherent length scale associated with GNDs also renders the model scale sensitive. The

scale dependence of mechanical response of polycrystalline materials has also been ver-

ified experimentally [20; 21]. Many efforts have been devoted over the last few decades

to develop the gradient plasticity theories based on GNDs to capture these experimentally

observed size effects [22; 23; 24; 25]. However, for the models which aim to capture the

size effect with the intrinsic length scale associated with GNDs, the initial yield stress of

polycrystals appears to be independent of the grain size because the GNDs evolve with

the applied strain and hence the initial responses depend only on the initial SSD density.

To address this, some grain size dependent initial GND density should also be stored to

account for initial micro-structure [26]. W.A. Counts et al. have introduced an initial

fictitious deformation to determine the initial GND state [27], whereas Evers et al. have

expressed GND density in terms of GB dislocation densities having similar geometrical

nature [28].

The grain boundary strengthening mechanism depends mainly on influential factors

such as crystallographic lattice rotation, grain misorientation [29] and ease of slip trans-
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mission across GBs [30]. Depending upon the orientation and structure, the GBs can

partially or completely obstruct the motion of dislocations across interfaces. However,

very few existing models elucidate the effect of GB micro-mechanics on elasto-plastic

deformation behaviour. Ma et al. introduced an energy penalty based GB CPFEM model

with a separate GB element to elucidate the dislocation interaction with GBs for a bicrys-

tal interface [31]. In their model half of the gauss points in the GB element are assigned

the properties of one crystal while the other half of gauss points are assumed to reside in

the other crystal. However, this representation restricts the shape of the GB to the sides

of a square grain as well allow only one element to mesh the GB. Moreover, in realistic

problems the interfaces may exist as multigrain junctions and the GB elements must in-

corporate the properties of all the adjoining grains. The representation provided in [31]

would fail to capture this scenario. The energy penalty must also evolve with the dislo-

cation accumulation to model the additional barrier offered by piled-up dislocations for

further incoming dislocations. Peng et al. have proposed the evolution of GB energy in a

work-conjugate gradient crystal plasticity framework [32]. However, in such models the

GNDs are solved as additional degrees of freedom making it computationally inefficient.

Traditionally, the CPFEM analysis is done using sharp GBs. The term sharp indicates

the jump in response and phase variables across the interface. However, the sharp rep-

resentation creates difficulty to incorporate physical models of grain boundary behavior

and microstructure evolution [33]. In further advancements, stepped interfaces are used in

which the elements are assigned to either of the grains, thus rendering a stepped structure

of the interface. A stepped interface is still sharp but without a smooth geometry. Hojun

Lim et al. observed that the voxelated (stepped) interface, at the local level, in contrast

to the smooth interfaces, showed some fake stress concentrations, which affects in deter-

mining the damage mechanism such as crack initiation [34]. To address the issues related

to a suitable representation of the GB region both to avoid numerical errors as well as to

incorporate a suitable GB constitutive law, a diffused interface model an energy penalty

based diffused interface GB model is developed in this thesis. The specific objectives of

this work are presented next.
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1.1 Objectives of the Thesis

Based on the observed deficiencies in micro-mechanical modelling of polycrystals using

CPFEM, the following tasks have been identified:

• To develop a non-local CPFEM model for capturing elasto-plastic behaviour of
polycrystal.

• To develop a diffused interface GB model.

• To capture the Hall-Petch effect for polycrystals using the model.

1.2 Outline of the Thesis

The thesis is organised as follows:

Chapter 1: A brief introduction of the current status of micro-mechanical modelling

of polycrystalline aggregates is provided. Background and motivation of the thesis is

discussed based on the literature survey of existing models.

Chapter 2: Details of CPFEM based non-local GB model are discussed. Basics of CP

framework, dislocation interaction based flow rule of gradient plasticity and concept of

energy penalty based GB model are explained. The numerical implementation of grain

boundary CPFEM is also discussed in this chapter.

Chapter 3: Results of various case studies for the bicrystal problem are discussed. The

Hall-Petch behaviour and the effect of misorientation of grains is presented for bicrystal

problem.

Chapter 4: Hall-Petch effect is verified for polycrystals. The simulation results are dis-

cussed in reference to experimental data available in literature.

Chapter 5: The thesis is concluded and the scope of future work is discussed.



CHAPTER 2

CPFEM Based Non-local GB Model and Numerical

Implementation

2.1 Kinematics

Many useful materials, such as conventional structural metals, can carry only very small

amounts of elastic strain. We can take advantage of this behavior to simplify the de-

scription of the deformation of such a material. Since the behavior is so common, the

assumption that the elastic strains are always small forms the basis of such inelastic ma-

terial models. This section discusses the description of the deformation for this case.

A multiplicative decomposition is typically used in crystal plasticity where the defor-

mation gradient F is decomposed into elastic and plastic parts as (see Figure 2.1)

F = F eF p (2.1)

Figure 2.1: Decomposition of deformation gradient.
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From Equation (2.1) we can obtain the velocity gradient as

L = Le + F e · Lp

0
· F e−1 (2.2)

where, Le = Ḟ e · F e−1 and Lp

0
= Ḟ p · F p−1 are the elastic and plastic velocity gradients

respectively. For the materials of concern here, we now assume that the elastic strains ϵe

are very small compared to unity. Using this together with the left polar decomposition

of elastic deformation, we can write

F e = V e ·Re =
(
I + ϑA

)
·Re (2.3)

in which |ϑ| ≪ 1 and A = AT , ∥A∥ = 1. We can use this decomposition of F e in

Equation (2.2) to obtain

L = Le +
(
I + ϑA

)
·Re · Lp ·ReT ·

(
I − ϑA

)
(2.4)

Now we define, L = D +W,Le = De +W e and L̄
p
= D̄

p
+ W̄

p, where D and W de-

note the symmetric and antisymmetric parts of each velocity gradient respectively. Using

these definitions and neglecting the higher-order term, the velocity gradient can now be

expressed as

L = De +W e +Re · (D̄p
+ W̄

p
) ·ReT

+ϑARe · (D̄p
+ W̄

p
) ·ReT − ϑRe · (D̄p

+ W̄
p
) ·ReT · A (2.5)

We are assuming small deformation in this work which results in W e = W p = 0 and

Re = I and reduces Equation (2.5) to

ϵ̇ = ϵ̇e + ϵ̇p (2.6)

where ϵ̇e and ϵ̇p are the elastic and plastic strain rates respectively.
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2.2 Single Crystal Constitutive Model

The plastic strain rate in the grain interior (outside GB region) is modeled using the con-

ventional single crystal constitutive law. In this model, the plastic strain rate is expressed

in terms of the slip rate on different slip systems, following

ϵ̇p =

nint
slip∑

α=1

γ̇α Sα
0 sym (2.7)

where nint
slip is the number of slip systems in the grain interior and γ̇α is the slip rate on

each slip system. In Equation (2.7) the term Sα
0 sym is the symmetric Schmid tensor given

as

Sα
0 sym =

[
Sα

0
+ Sα

0

T

2

]
(2.8)

with

Sα

0
= mα

0 ⊗ nα
0 (2.9)

where mα
0 and nα

0 are slip direction and slip normal vectors of a slip system. In this work,

the slip systems of the FCC crystal are reduced to a total number of 8 pseudo slip systems

such that the out of plane plastic shear strains are zero. These reduced slip systems are

presented in Section 3.2.

The slip rate on every slip system, α, is expressed using an activation enthalpy based

flow rule adopted from [10] given by

γ̇α = γ̇α
0 exp

[
−
Qα

slip

kBθ

{
1−

(
|τα|
gα

)p}q]
sign(τα) (2.10)

where Qα
slip denotes the activation barrier to slip, γ̇α

0 is the reference slip rate on slip

system α, kB represents Boltzmann’s constant, θ is the absolute temperature in Kelvin,

τα and gα are the resolved shear stress and effective slip system resistance on slip system

α respectively, p and q are modelling parameters. The resolved shear stress (τ ) on the slip

system α is expressed as

τα = σ : Sα
0 (2.11)
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where σ is the Cauchy stress tensor.

Material hardening is captured at slip system level through slip system resistance gα

in Equation (2.10). The orientation of the grains changes across GBs resulting in gradient

of plastic strain at and near them. Due to these gradients, some extra amount of net

dislocation must be stored in addition to the SSDs. Hence, the evolution of slip system

resistance in this work is assumed to be controlled by two types of dislocations, viz. SSDs

and GNDs. Based on this understanding, the hardening law used in this work assumes

that the critical resolve shear stress gα, initially equals g0 and then evolves as

ġα =
∑
β

hαβ|γ̇β|+ k0
α̂2G2 ∥b∥
2(gα − gα0 )

∑
β

λβ|γ̇β| (2.12)

The above equation for the evolution of slip system resistance is adopted from [19]. In the

equation, the first and second terms correspond to the effect of SSDs and GNDs on work

hardening respectively. Here k0 and α̂ are dimensionless constants, b is the magnitude

of burgers vector, G is the shear modulus, gα0 is the initial slip system resistance. The

term hαβ are the components of the hardening matrix capturing the influence of slip on

the βth slip system on the resistance of the αth slip systems. A linear hardening model is

considered in this work and is given by

hαβ = hα
0 q

αβ (2.13)

qαβ =

 1 if α = β

1.4 otherwise
(2.14)

The term λβ in Equation (2.12) is a scalar measure of slip plane lattice incompatibility

and can be expressed for each slip plane as a function of slip plane normal nβ and incom-

patibility tensor Λ as

λβ = (Λnβ : Λnβ)
1
2 (2.15)

In the above equation, the dislocation density tensor Λ, also known as the Nye’s disloca-

tion tensor, is a measure of GND density. It can be expressed using the curl of the plastic
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strain tensor as

Λ = ∇T × ϵp (2.16)

The single crystal equations discussed above are modified in the GB region to incorporate

the slip transmission mechanism across GB, which is discussed in the next section.

2.3 GB Region Constitutive Model

The GB model developed in this work is adopted from [31] and introduces a finitely thick

diffused interface region at the GB having the properties of all the adjoining grains. This

is achieved by assuming that the total number of slip systems in the GB region (nGB
slip) is

nGB
slip = nint

slip n
GB
grain (2.17)

where nGB
grain is the count of number of grains lying within the GB region. A volume

average term is introduced to find the averaged response of the constituent grains and is

expressed as

vfrac =

(
1

nGB
grain

)
(2.18)

It is assumed that a material point at the GB region satisfies the stress equilibrium (uniform

stress) and strain compatibility (uniform strain rate), while the plastic strain rate follows

a mixture rule such that

ϵ̇p =

nGB
grain∑
i=1

vfraci ϵ̇p
i

(2.19)

where ϵ̇p
i

represents the plastic strain rate of constituent grain present in the GB region.

The total plastic strain rate of a constituent grain is determined from the slip rate due to

the activation of slip systems within that grain and the slip getting transmitted to it from

different slip systems of the other constituent grains present in the GB region. Thus,

ϵ̇p
i
=

nint
slip∑

α=1

(
γ̇α
self + γ̇α

trans

)
Sα
0 sym (2.20)
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where, γ̇α
self and γ̇α

trans are activated and incoming transmitted slip rates respectively, on

slip system α of the ith constituent grain. The slip rate contribution to a grain due to the

activation of its slip systems is defined as

γ̇α
self =

1

mα
γ̇α
0 exp

[
−
Qα

slip +Qα
GB

kBθ

{
1−

(
|τα|
gα

)p}q]
sign(τα) (2.21)

where Qα
GB is an additional energy penalty due to the resistance offered by GB to transmit

dislocations across it. The selection of slip system in the other grains for slip transmission

is based on minimizing the remnant dislocation line on GB for incoming and outgoing slip

systems and is discussed in Section 2.3. In Equation (2.21), mα is the number of grains,

including this grain, in which the activated slip rate is getting distributed. The concept of

introducing this factor is based on a physical assumption that if the dislocations of slip

system α in a grain in GB region finds a slip plane in some other constituent grain having

the minimum energy penalty for slip transmission, then the slip rate of that slip system

gets equally divided in all the shared grains. This also suggests that a transmitted slip rate

for the other slip systems should also be considered and is given by

γ̇α
trans =

ntrans∑
β=1

1

nαβ

(
γ̇β
self

)
(2.22)

where ntrans is the number of slip systems in other grains which transmit dislocations to

the α slip system and nαβ is the number of slip systems in this grain to which a slip system

β in the other grain is transmitting dislocation.

The distribution of transmitted slip is schematically explained below using Figure 2.2.
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Figure 2.2: Schematic illustration of a hypothetical slip transmission event at a tripple
point. A1 to A4, B1 to B4 and C1 to C4 represent the slip systems of the
grains A, B and C respectively.

Consider a hypothetical slip transmission event shown in Figure 2.2. Here A, B and

C represent three different grains and the four subdivisions in each of them represent

four different slip systems belonging to them. The arrows show the direction of slip

transmission. By looking at the figure we can say that the slip from 3rd slip system of grain

A is getting transmitted to (2nd) slip system of grain C and also to (3rd &4th) slip systems

of grain B. The 3rd slip system of grain A is also receiving the slip getting transmitted

from 4th slip system of grain C and 1st slip system of grain B which is also transmitting

slip to 2nd slip system of grain A. The table below shows various terms involved in

the slip transmission formulation in Equations (2.19) to (2.22) for the hypothetical slip

transmission events that may occur at a triple point and shown in Figure 2.2.
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Table 2.1: Hypothetical slip transmission event at a triple point.

αi Transmitting to mα Receiving from mβ nαβ Total slip

3A 3B, 4B

2C

3 1B

4C

2

2

2

1

γ̇3A

3
+ 1

2
· γ̇1B

2
+ 1

1
· γ̇4C

2

2A − 1 1B 2 2 γ̇2A

1
+ 1

2
· γ̇1B

2

1B 2A, 3A 2 − − − γ̇1B

2
+ 1

2
γ̇1B

2
+ 1

1
γ̇4C

2

3B − 1 3A 3 2 γ̇3B

1
+ 1

2
· γ̇3A

3

4B − 1 3A 3 2 γ̇4B

1
+ 1

2
· γ̇3A

3

2C − 1 3A 3 1 γ̇2C

1
+ 1

1
· γ̇3A

3

4C 3A 2 − − − γ̇4C

2

Total − − − − − γ̇3A + γ̇2A + γ̇1B +

γ̇3B+γ̇4B+γ̇2C+γ̇4C

From the last entry shown in Table 2.1, we can also verify that the total slip rate is

redistributed but it remains conserved. The evolution of slip system resistance in a grain

at the GB region is obtained from Equations (2.13) and (2.14) , and is assumed to be only

affected by the self and latent hardening of other slip systems in that grain only.

Grain Boundary Energy Penalty

The GB energy penalty appearing in Equation (2.21) is given by

Qα
GB = Qα

0−GB (1 + kq γ
α
a ) (2.23)

where, Qα
0−GB is the energy penalty applied to account for the GB barrier based on mini-

mizing the remnant dislocation line on GB for incoming and outgoing slip systems. This

additional energy for the transmission event is the energy of formation of GB dislocations

which are left as debris during the penetration event. The GBs can absorb these debris

dislocations up to certain extent but as the concentration of these GB dislocations keep

on increasing the GBs can not simply absorb these dislocations and the required energy
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penalty to transmit across the GB increases gradually. To model this behavior, the term

(1 + kq γ
α
a ) is added in the formulation to account for the evolution of Qα

GB. Here, γα
a is

the accumulated slip on slip system α, given by

γα
a =

∫
γ̇α dt (2.24)

and the coefficient kq is taken as a constant here, which controls the rate of evolution

of energy penalty with slip accumulation. The spatial distribution of accumulated slip

for a bicrystal problem is presented in Section 3.7.1. The effect of evolution of penalty

energy on the macroscopic response and its pattern of evolution for individual slip system

is also discussed in Section 3.9 for the bicrystal problem. The method of calculating the

misorientation based energy penalty Qα
0−GB is discussed below.

Figure 2.3 shows the schematic of a typical slip transmission event across GB in a

bicrystal. We are considering the transmission of dislocations from crystal I to crystal II

separated by the GB having normal vector nGB. If a slip system of crystal I is described

by the slip direction mα
0 and slip plane normal nα

0 then the task is to identify the slip

systems (mβ
0 , n

β
0 ) in crystal II which offers the minimum energy barrier or the smallest

misalignment to slip transmission. The dislocation line elements on the two sides of GB

can be expressed as

lα = bα(mα
0 × nα

0 ) (2.25)

lβ = bβ(mβ
0 × nβ

0 ) (2.26)

where, bα and bβ are the magnitudes of the respective Burgers vector. It is assumed

that these dislocation line elements (lα and lβ) will align with the GB plane during the

transmission event. These aligned dislocation lines are obtained from

lα′ = ∥lα∥ (nGB × nα
0 ) (2.27)

lβ
′
= ∥lβ∥

(
nGB × nβ

0

)
(2.28)

For an arbitrary slip transmission event across GBs, it is possible that the incoming dislo-
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cations do not have a corresponding geometrically coherent slip system on the other side

of the GB. Therefore, the combined effect of the aligned dislocation line elements and the

Burgers vector have been considered to obtain a second order tensor

bαGB ⊗ lαGB = bαmα
0 ⊗ lα′ − bβmβ

0 ⊗ lβ
′

(2.29)

quantifying the remnant lattice defects in the GB. The additional energy required to pro-

duce such extra misfit dislocations acts as an energy barrier measure for transmission

events. The out-going slip system is the one that has the minimum energy barrier amongst

all the possible slip systems of the surrounding grains. Thus, Qα
0−GB is chosen as

Qα
0−GB = min

β

1

2
G∥bαGB∥2∥lαGB∥ (2.30)

where ∥bαGB∥ and ∥lαGB∥ correspond to remnant Burgers vector and length of GB disloca-

tions. The magnitude of the Burgers vector of these misfit dislocations can be expressed

in terms of lattice Burger vector as

∥bαGB∥ = c ∥b∥ (2.31)

where, ∥b∥ is the magnitude of lattice burger vector. The length of misfit dislocation line

elements (lαGB) can be calculated using Equation (2.29) as

∥lαGB∥ =
∥ bα ⊗ lα′ − bβ ⊗ lβ

′ ∥
∥bαGB∥

(2.32)

Therefore, the minimum energy penalty required for a typical penetration event across

GB can be calculated as

Qα
0−GB = min

β
c
1

2
G∥b∥2∥ bα ⊗ lα′ − bβ ⊗ lβ

′ ∥
∥b∥

(2.33)
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Figure 2.3: Schematic of slip transmission event across GB in a bicrystal.

The typical values of various modelling parameters used in the above formulations are

presented in Table 2.2.
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Table 2.2: Parameters of the non-local grain boundary model.

Symbol Value Meaning

γ0 1.732× 106 s−1 Reference shear rate

p 0.141 Flow rule modelling parameter

q 1.1 Flow rule modelling parameter

E 70× 109 Pa Young’s modulus

ν 0.3 Poisson’s ratio

G 25× 109 Pa Shear modulus

g0 30× 106 Pa Reference slip system resistance

h0 250× 106 Pa Hardening coefficient

k0 2 GND modelling parameter

α̂ 10 GND modelling parameter

θ 298 K Absolute temperature

b 0.3× 10−9 m Magnitude of burgers vector

kB 1.38× 10−23 JK−1 Boltzmann’s constant

Qslip 3× 10−19 J Activation energy for slip

c 1 Coefficient of energy penalty

kq 1× 102 Coefficient of energy penalty evolution
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2.4 Numerical Implementation

In typical finite element calculations using non-linear constitutive models, the discretized

principle of virtual work (PVW), which enforces weak-form equilibrium and traction

boundary conditions, generates an estimated incremental displacement field ∆u. These

fields drive the calculation of stress and other fields at the end of a time increment. If the

calculated stress field does not satisfy the PVW, then the estimate of ∆u is revised, and a

new end-of-increment stress field is calculated. This iterative process continues until the

PVW is satisfied to within acceptable tolerances.

Let us assume that at the beginning of a time increment step (say tn+1) the following

are given:

(a) The time independent slip systems (mα
0 , n

α
0 ).

(b) Slip system resistances (gαn ), Cauchy stress (σ
n
), the total strain tensor (ϵ

n
) and

plastic strain tensor (ϵp
n
);

(c) The total strain tensor (ϵ
n+1

) for a suitably small (but finite) increment obtained
from the estimated displacement field ∆u

where n and n+1 are points designating the beginning and end of a incremental displace-

ment field given by ∆u. The incremental problem is to calculate ϵp
n+1

, gαn+1, σn+1
and ∆u

at the end of time increment defined by ∆t = tn+1 − tn.

The time integration procedure employs a two level scheme. At the global level, suit-

able nodal ∆u are evaluated iteratively such that the nodal force balance is ensured. In

order to obtain the nodal forces in every element, stresses, plastic strain, etc. needs to

be computed at every Gauss quadrature point in every element and is the local level. The

evaluation of the quadrature point state is also determined from a two level scheme. In this

approach, the stress is determined in the first level (inner loop) of the Newton-Raphson

method while the slip system resistance is updated in the second level (outer loop). The

iteration flag for the outer loop is chosen as (k) and for inner loop it is chosen as (m).

In the first level of iterative process, to achieve stress convergence the slip resistance (gk)

remains constant. Here, (gk) denotes the updated value of slip resistance at kth itera-

tion of the outer loop. Since the total strain for the iteration (ϵ
n+1

) is determined using
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incremental displacement field, the total incremental strain can be calculated as

∆ϵ = ϵ
n+1

− ϵ
n

(2.34)

The Nye’s dislocation tensor (given by Equation (2.16)) is also estimated here based on

the plastic strain of the previous increment field (ϵp
n
), the method to calculate it is dis-

cussed in Section 2.4.1.

In the evaluation of stress, plastic strain, etc. at a Gauss quadrature, the outer loop is

set to start with iteration flag k = 1. The initial guess for the Cauchy stress σ
(k=1,m=1)

is taken as the value of the previous time point, or, σ
n
. Similarly, the initial guess for

incremental plastic strain is taken as zero

∆ϵp
(k=1,m=1)

= 0. (2.35)

The residual to obtain the Cauchy stress at any iteration is given by

r
m
= σ

m
− σ

n
−
[
C

(
∆ϵ−∆ϵp

m

)]
(2.36)

where C is the fourth order elasticity tensor. When this calculated residual (r
m

) comes

within the defined tolerance,

max
(∣∣∣r

m

∣∣∣) ≤ rtolerance (2.37)

the Cauchy stress is considered to be converged and we move to the outer level of it-

eration for updating the slip system resistances. However, if the estimated residual by

Equation (2.36) does not satisfy the stress convergence condition, then we start the inner

loop here (m=1), and calculate the Jacobian

Aijkl = δikδjl + Cijpq ∗
∂

∂ταm
γ̇α(ταm, g

α
k ) ∗∆t ∗ S0pq ∗ S0kl (2.38)
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In the above equation the resolved shear stress is calculated from

ταm = σ
m
: Sα

0
(2.39)

and the slip rate γ̇α
m(τ

α
m, g

α
k ) is calculated using Equation (2.10). Subsequently the Cauchy

stress is updated following

σ
m+1

= σ
m
− A−1

m

r
m

(2.40)

With the updated Cauchy stress, the resolved stress for the next iteration gets updated as

ταm+1 = σ
m+1

: Sα

0
(2.41)

the slip rate γ̇α
m+1

(
ταm+1, g

α
k

)
is calculated using Equation (2.10) and the incremental plas-

tic strain is updated using

∆ϵp
m+1

= ∆ϵp
m
+
∑
α

γ̇α
(
ταm+1, g

α
k

)
Sα

0
(2.42)

The above strategy is modified in the GB region according to Equation (2.20) as dis-

cussed in Section 2.3. Once the plastic strain is updates, a new residual is estimated from

r
m+1

= σ
m+1

− σ
n
−
[
C

(
∆ϵ− ϵp

m+1

)]
(2.43)

and checked for convergence condition defined by Equation (2.37). This iterative process

in the inner loop is continued until the convergence condition is satisfied. The converged

values of Cauchy stress, resolved shear stress, slip system resistances and slip rates for

kth iteration of outer loop are denoted as σ
k
, ταk , gαk , γ̇α

k respectively.

Once convergence is achieved in the inner loop, the slip systems resistances are updated

in the outer loop using

gαk+1 = gαk +
∑
β

hαβ
∣∣∣γ̇β

k

(
τβk , g

β
k

)∣∣∣
+ k0

α̂2G2b

2(gαk − gα0 )

∑
β

λβ
∣∣∣γ̇β

k

(
τβk , g

β
k

)∣∣∣ (2.44)
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and the following ∣∣gαk+1 − gαk
∣∣ ≤ g tolerance (2.45)

is checked. If the above criterion is not satisfied then we repeat the process in the inner

loop with the updated slip system resistance value
(
gαk+1

)
.

The converged values of Cauchy stress and slip system resistances depict the state of

the Gauss quadrature point at tn+1. The Cauchy stress is used to calculate the elemental

CPFEM residual. The assembly of all the elemental residuals yields the global residual

which represents the incremental principle of virtual work (PVW). It is checked whether

the norm of the global residual is within the acceptable tolerance. If not then the incre-

mental displacement field (∆u) is updated and the two level iterative process is repeated.

This iterative process continues until the PVW is satisfied.

2.4.1 Calculation of Nye’s Dislocation Tensor

As discussed in the previous Section, for every incremental displacement field applied

for the convergence of state variables during numerical time integration, the slip system

resistance is required to be updated. As we have seen in Equation (2.12), the total slip

resistance has two components. The second term, which represents the contribution of

GNDs to the total slip system resistance, is calculated based on the Nye’s dislocation

tensor (Λ). For our approach using additive decomposition of strain rates, the Nye’s tensor

is defined as the curl of the plastic strain tensor (ϵp) (Equation (2.16). In the previous

Section we have seen that after every iteration of displacement update (∆u), the converged

plastic strain tensor is obtained at each integration points or Gauss quadrature points. The

schematic of an iso-parametric four noded rectangular element with four Gauss points

used in this work is shown in Figure 2.4, where red squares represent position of the

nodes while blue dots are the positions of Gauss points.
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Figure 2.4: Schematic of four noded element with four Gauss points.

The Nye dislocation tesnor (Λ) can be expressed as

Λ = ∇T × ϵp =∈ijk

∂ϵpmj

∂xi

ek ⊗ em (2.46)

where ∈ is the Levi-Civita symbol, ek and em are the basis vectors of the three dimensional

space. The above expression is simplified for the case of plane strain deformation as

Λ =


0 0 (∈231 ϵp33,2)

0 0 (∈132 ϵp33,1)

(∈213 ϵp11,2+ ∈123 ϵp12,1) (∈213 ϵp21,2+ ∈123 ϵp22,1) 0

 (2.47)

For calculating the various spatial derivatives involved in Equation (2.46) at a Gauss point,

the plastic strain values at the Gauss points are required to be extrapolated to the nodes.

Once we have the values at the nodes we can interpolate them again in terms of elemental

shape functions. We know that the value of any variable at a Gauss point inside the 2D
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rectangular element can be related to the nodal values using

y gauss =
∑
i

Ni y inode
(2.48)

If we apply the same for the plastic strain components then a relation can be established

between the their values at the Gauss points and nodes. This relation is a simple linear

map expressible as a matrix-vector operation following

{ϵp}gauss = [N ] {ϵp}node (2.49)

where N is the matrix of shape functions evaluated at the Gauss points. As the map is

unique and the matrix is invertible hence the nodal values of plastic strain components is

found from

{ϵp}node = [N ]−1 {ϵp}gauss (2.50)

For the nodes which are getting shared the total extrapolated values at these node

are averaged to get the value at the node. Once we have the values at the nodes the

Equation (2.47) is applied to obtain the Nye’s tensor at the Gauss points. The entire

algorithm described above is aimed at expressing the Gauss point values of the curl of a

tensor within an element using the shape functions defined in natural coordinates.



CHAPTER 3

Numerical Study Using a Two-Grain Representative

Volume

3.1 Problem Description

The schematic illustration of uniaxial plane strain tensile deformation of a bicrystal do-

main is shown in Figure 3.1. The geometry, boundary conditions and FEM mesh are

displayed in this figure. The dotted and solid black lines represent the mesh and the outer

surfaces of the domain respectively. ‘L1 = 2D + WGB’ and ‘L2 = D’ are the dimen-

sions of the shown bicrystal domain, where ‘D’ represents the grain width and WGB is the

width of GB region. The solid red lines symmetrically spaced in the middle of the domain

separate the grain boundary region from the grain interior regions. The point of lower left

corner is hinged while roller supports are provided along the lower edge of domain. The

left and right edges of domain are free while displacement is applied on the top edge.

Figure 3.1: Schematic of a bicrystal in plane strain condition and subjected to uniaxial
loading.
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3.2 Reduced Slip Systems of FCC Single Crystal in Plane

Strain

Generally, the three-dimensional CPFEM computations are required to capture realistic

deformation behaviour of crystals. However, three-dimensional simulations are computa-

tionally expensive and also may not always help to get an insight into the fundamental un-

derstanding of the physical phenomenon. In contrast, the two-dimensional computations

under plane strain conditions are more efficient and can provide effective information on

the fundamental deformation behavior of such materials. Thus, in this work plane strain

two dimensional analyses have been performed.

The FCC slip systems if simulated in 2D on any plane can result in out-of-plane shear

components of plastic strain and stress. However, a suitable plane (or a family) can be

chosen for 2D analysis involving FCC crystals that can eliminate out-of-plane shear com-

ponents. This will primarily happen due to the symmetric and anti-symmetric response

of certain slip systems when the FCC crystal is loaded on this plane. Considering this

slip behavior on the chosen plane (or family) the total number of slip systems of the FCC

crystal can be reduced. These planer pseudo slip systems are the contractions of the ac-

tual crystallographic slip systems with a particular crystal orientation that the out-of-plane

shear component of plastic strain cancels out. Such simplified versions have been often

employed in the past to study the crystal deformation behaviour [35; 36; 37; 38]. Crack

problems were investigated under plane strain conditions in [39; 40]. In experimental

studies [41; 42], plane strain specimens were employed to explore the fundamental nature

of GND storage in a macroscopic strain gradient field and hence this representation can

be useful.

The slipping of dislocations is naturally preferred on some specific planes (close

packed planes) and in specific directions (close packed directions). In FCC crystal struc-

tures, there are 4 octahedral planes (111), (1̄11), (11̄1) and (111̄), and 3 <110> directions

on each plane, resulting in a total of 12 slip systems. In the present work, the twelve

slip systems of face-centered cubic (FCC) crystal is reduced to a two-dimensional plane

strain version having eight effective slip systems. These Slip system are schematically
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illustrated in Figure 3.2. In the figure, the yellow colored plane represents the plane of

loading, M1 to M8 are the modified slip directions, and N1 and N4 are the slip plane nor-

mals. From this figure we can see that the three slip directions of any octahedral plane of

FCC crystal can be resolved into two slip directions. The arrangement of slip directions

are such that the plastic strain rate obtained from Equation (2.7), and stress has zero out

of plane shear components. Table 3.1 presents the slip directions and planes for these slip

systems where, V1 =
√

2/3, V2 =
√
1/3.

(a)

(b)

Figure 3.2: Reduced slip systems for FCC crystal for 2D plane strain CPFEM simulations.
Plane of loading is highlighted in yellow. N1 to N4 are the slip plane normals.
M1 to M8 are the modified slip directions. A1 to A3, B1 to B3, C1 to C3 and
D1 to D3 are the original slip directions on the octahedral planes.
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Table 3.1: Reduced slip systems of FCC crystal for 2D plane strain CPFEM simulations.

No. Slip Plane Normal Slip Direction Label

1 (V1 V2 0) [0 0 1] M1

2 (V1 V2 0) [V̄2 V1 0] M2

3 (0 V2 V1) [1 0 0] M3

4 (0 V2 V1) [0 V1 V̄2] M4

5 (V̄1 V2 0) [0 0 1] M5

6 (V̄1 V2 0) [V2 V1 0] M6

7 (0 V2 V̄1) [1 0 0] M7

8 (0 V2 V̄1) [0 V1 V2] M8

3.3 Convergence Study

The aim of the formulation using the diffused representation of GB region is to model the

Hall-Petch behavior by penalising the transmission of dislocations across the GBs, which

in turn can lead to develop a gradient of plastic deformation and increase the resistance

offered to slipping of dislocations. However, the physical thickness of the GB region

should not directly affect the macroscopic responses by virtue of its size which is very

small compared to the grain dimensions in actual microstructure of the metallic alloys .

Moreover, the macroscopic elasto-plastic responses should not be affected by the element

size of FEM mesh and the time step used in implicit-explicit numerical integration scheme

discussed in Chapter 2. To ensure these conditions, convergence studies are performed

to determine the optimal physical thickness of the GB region, element size of FEM mesh

and the time step size before performing bicrystal and polycrystal CPFEM simulations to

explore Hall-Petch effect. These convergence studies are presented next.
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3.3.1 Optimal Physical Thickness of GB Region

For determining the optimal physical thickness of GB region a bicrystal problem con-

firming with the one described in Section 3.1 is chosen. The grain width (D) is kept to be

constant as D = 50µm. The thickness of the GB region is varied as 0%, 1%, 2%, 4% and

6% of D which comes to be 0µm, 0.5µm, 1µm, 2µm and 3µm respectively. Here the

0% case is the one where no actual interface region is present, but the gradients induced

by the misorientation between neighbouring grains is captured by GND. The time step

and size of finite element mesh is kept constant for running these simulations. The chosen

time step is 0.001 second and the domain is discretized into elements of 0.5µm× 0.5µm

dimension which are also later on verified to be converged in Section section 3.3.2 and

Section 3.3.3 respectively. The true macroscopic stress is plotted against applied ten-

sile strain in Figure 3.3 to understand the effect of physical thickness of the GB region on

elasto-plastic response. The figure shows that the macroscopic elasto-plastic responses are

almost converged for the cases when the physical thickness of the GB region is dropped

to less than or equal to 2% of the grain diameter (D).

Figure 3.3: Effect of physical thickness of the GB region on macroscopic stress-strain
response. D represents the grain diameter.

In continuation with the above conclusion, it is further required to prove that the con-
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vergence with interface thickness can be given in terms of a normalized quantity such

as the ratio of thickness to grain diameter and not the absolute thickness value, i.e., the

responses are converged with the GB region having thickness as 2% of grain diameter or

lower and not the absolute value 1µm which is the same for the above defined set of case

studies. To verify this, similar plane strain tensile deformation problem was chosen, but

with two different grain sizes (Figure 3.1) of L1 = 100µm and L1 = 200µm. In both the

cases thickness of GB region (WGB) is taken as 2% of D, i.e. in first case it is 1µm while

for later one it is 2µm. The GNDs are turned off for these cases so that the macroscopic

stress-strain responses are not affected because of the grain size effect captured by GNDs.

The comparisons of macroscopic and local results are shown in the figures below. In

Figure 3.4 (a) we can see that the macroscopic responses remain unaffected for the two

cases with different grain size and therefore with two different absolute physical thickness

of GB region. From this we can conclude that the GB region thickness convergence is

obtained for 2% percent of grain diameter for which the absolute thickness value can vary

with the chosen grain diameter. The response can be explained using Figure 3.4 where we

can clearly see that the slip system resistance caused by SSDs remains almost unaffected

for chosen thickness of GB region.

From the results of previous two sets of case studies it can be educed that if the thick-

ness of the GB region is chosen to be less than or equal to 2% of the grain diameter then

the GB region does not directly affect the local as well as the macroscopic responses due

to the use of a different constitutive model. Rather the GB region bring in the desired

grain size effect by affecting transmission of dislocations across it.
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(a)

(b)

Figure 3.4: GB thickness convergence with two different grain size without considering
the effect of GND. (a) macroscopic stress vs strain and (b) maximum of all
the slip system resistances due to SSDs.
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3.3.2 Converged Time Step Size

An implicit-explicit time integration scheme is adopted in this work as discussed in Sec-

tion 2.4. The explicit method to calculate Nye’s tensor can introduce error in the solution

if a large time step size is used and a suitable size should be chosen to get accurate re-

sults along with minimum computational overhead. The typical time step size used for

simulating the case studies presented in this thesis varies from dt = 0.001 second to

dt = 0.0005 second depending upon the size of the problem. The convergence study

is performed with an even smaller time step dt = 0.0001 second to show that the re-

sponses are converged in the range of time step size used for the simulations in this thesis.

The bicrystal problem with L1 = 100µm and GB region thickness as 1µm, described in

Section 3.1, is chosen to obtain the converged time step. The domain is discretized into

elements of size 0.5µm× 0.5µm, and is kept the same for all three cases of different time

step size. The macroscopic stress strain curves for the chosen time step sizes are shown in

Figure 3.5. As can be seen from the figure, the macroscopic responses are almost overlap-

ping for all the three cases and hence dt = 0.001 second can be considered as a suitable

time step size to obtain accurate results.

Figure 3.5: Macroscopic stress-strain response for three different sizes of time step.
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3.3.3 Mesh Sensitivity Analysis

Discretizing the domains into certain number of finite elements is a method of finding

numerical solutions for several real life problems. However, theoretically the domains

should be discretized into infinite number of small elements to find accurate solutions, but

it will make it computationally infeasible. Therefore, finite element meshes with the mesh

sizes for which the responses appears to be converged with an error in the range of defined

acceptable tolerance are chosen for numerical simulations. Executing the GB models with

having uniform mesh usually become computationally heavy for the converged time step

size and converged physical thickness of GB region as discussed in Section 3.3.1. The

challenge is even more for simulating actual polycrystal problems as the required number

of elements are significantly large depending on the number of grains and may require

even smaller time steps for convergence of Newton Raphson iterations.

The purpose of doing a mesh sensitivity analysis is to find the largest possible element

size for which the responses are converged with error lying in the range of accepted toler-

ance. In this work an upper limit for possible element size is set by the converged optimal

thickness of GB region defined in Section 3.3.1, WGB = 1µm in this case where the GB

discretized using one element. In the mesh sensitivity analysis the bicrystal problem de-

scribed in Section 3.1 is used with L1 = 100µm, WGB = 1µm and dt = 0.0005 second.

Three different element sizes of 1µm× 1µm, 0.33µm× 0.33µm and 0.25µm× 0.25µm

are taken.

Figure 3.6 shows that the macroscopic responses are almost converged for the mesh

sizes 0.33µm × 0.33µm and 0.25µm × 0.25µm, while for element size 1µm × 1µm

we can see the small deviation from the converged response near 1% strain. Though the

divergence of responses is very small, the computational time involved gets significantly

increased for the smaller element size mesh. Hence, we are considering the mesh size of

1µm× 1µm in subsequent simulations.
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Figure 3.6: Macroscopic stress-strain response for three different element sizes of finite
element mesh.

3.4 Verification of Single Crystal Effect

Here we consider a bicrystal in which both the crystal have the same orientation. Since

both the grains have the same orientation then slip transmission across the GB should not

encounter any resistance and the bicrystal response as obtained from the model should be

same as that of the single crystal. In this comparison the response of a single crystal with

no GB region is compared with a bicrystal having the same orientation when subjected

to uniaxial tensile strain of 1% as described in Section 3.1. For both the single crystal

and bicrystal geometries, L1 = 100µm, and L2 = 50µm. Additionally for the bicrystal

D = 49.5µm and WGB = 1µm which also produces L1 = 100µm.

A comparison of the macroscopic and local responses of the bicrystal and single crys-

tal under uniaxial strain is shown in the figures below. In Figure 3.7 we can see that (a)

the macroscopic response are exactly the same for the two cases. The local response is

obtained on a material line from (0, L2/2) to (L1, L2/2) (see Figure 3.1). The compar-

isons are shown in Figure 3.7(b) to (f). As it can be seen from the figures, the variations
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in gSSD, gGND, gtotal, σ22 and ϵ22 are also within the tolerance limits. Another important

inference we can develop is that for the cases of very small misorientation, the slip system

resistance caused by GNDs is negligibly small compared to total slip system resistance

caused due to SSDs.

(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 3.7: (a) Comparison of macroscopic stress vs strain between bicrystal with zero
misorientation and single crystal. Comparison of (b) maximum of all slip sys-
tem resistances caused by GNDs, (c) maximum of all slip system resistances
caused by SSDs, (d) maximum of all total slip system resistances, (e) normal
stress component in the loading direction, and (f) normal strain component in
the loading direction, between bicrystal with zero misorientation and single
crystal on a line (0, L2/2) to (L1, L2/2) at applied uniaxial strain of 1%.
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3.5 Independence of GB Resistance to Relative Orienta-

tion of Grains

The slip transmission across an interface should depend on the misorientation θ1 − θ2

and not on the relative location of the grains with orientation θ1 and θ2. Therefore, if we

simply interchange the orientations of the grains on the two sides of the GB region, neither

the macroscopic nor the local responses of the two individual grains should be affected.

For checking this we take two similar bicrystals both having grain size (D) = 49.5µm

and a GB region thickness (WGB) = 1µm. The macroscopic boundary condition and

deformation scheme remains the same for both of them as represented in Figure 3.1. For

the two crystals two different Euler angles are chosen as 45◦ and 0◦. In one of the cases

the 45◦ grain is on the left and 0◦ grain is on the right side of GB region while in the other

case 45◦ grain is kept on the right and 0◦ grain is on the left side of GB region as shown

in Figure 3.8.

(a) (b)

Figure 3.8: Two bicrystals with the following grain orientations: (a) Euler angle of left
grain = 45o and right grain = 0o; (b) Euler angle of left grain = 0o and right
grain = 45o.

A comparison of the macroscopic and local responses of the bicrystals under uniaxial

strain is shown in the figures below. From Figure 3.9 (a) we can see that the macroscopic

response of both bicrystals are identical. The comparison of the other variables such as

stress, strain, slip system resistances, etc. on the line (0, L2/2 ) to (L1, L2/2 ) in Figures

3.9 (b) to (f) shows that they are mirrored, which clearly demonstrates that the GB region

model is able to capture the invariance on relative orientation.
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(a)

(b)
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(c)

(d)



CHAPTER 3. NUMERICAL STUDY USING A TWO-GRAIN REPRESENTATIVE
VOLUME 40

(e)

(f)

Figure 3.9: (a) Comparison of macroscopic stress vs strain between the bicrystals with
different orientations. Comparison of (b) maximum of all slip system resis-
tances caused by GNDs, (c) maximum of all slip system resistances caused
by SSDs, (d) maximum of all total slip system resistances, (e) normal stress
component in the loading direction, and (f) normal strain component in the
loading direction, between the bicrystals with different orientations on a line
(0, L2/2) to (L1, L2/2) at applied uniaxial strain of 1%.
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3.6 Initialization of Size Dependent GND Density in a

Microstructure

As discussed in Chapter 1, for most of the GND based models developed to capture

the effect of grain size on the elasto-plastic behaviour, the responses in the first yield

appears to be independent of grain size and the size effect is observed only later in the

hardening region. The reason behind such response is that, these models capture the effect

of grain size on yield stress by capturing the developed gradient of the plastic strain.

Thereafter, the size effect is brought in by relating this gradient of plastic strain to the

slip system resistance using various GND density formulations. Depending upon their

geometrical nature as discussed above, GNDs evolve in the plastic deformation region,

while the responses in the near elastic region is controlled by SSDs which are independent

of grain size. To make these models capable of capturing size effect, some size dependent

initial GND density must be introduced. W.A.Counts et al. [27] have introduced an initial

fictitious kinematics in their model to define initial state of microstructure.

To incorporate the above discussed effect in the model developed in this work, we

employ an unloading-reloading technique. In this method, the crystal is first deformed

in the displacement controlled mode up to a strain level in the plastic deformation region

and then allowed to relax in the load controlled mode by removing the applied deforming

conditions until the tractions on all the free surfaces of the specimen are zero. This relaxed

state is then considered as the initial state to perform uniaxial tensile simulation.

The unloading is done in load controlled mode to avoid developing reactive tractions

of opposite nature. The unloaded and reloaded states for a plastically deformed bicrystal

is shown in Figure 3.10(a). In this figure, We can see that the reactive tractions are zero in

unloaded state. However, it can also be seen that the unloading path does not trace back

the initial loading path. There is a slight increase in strain during the load controlled un-

loading process and is caused by the stresses developed at the end of the strain controlled

loading step.

To verify the implementation and technique, the same procedure is applied on an elas-

tic specimen Figure 3.10(b). Here it can be seen that the loading, unloading and reloading
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paths trace each other as expected. For the elasto-plastic bicrystal, the distribution of

maximum slip system resistance due to GND (gGND) amongst all the slip systems after

unloading is shown in Figure 3.11. As can be seen from the figure, there is a heteroge-

neous distribution of gGND that shows the workability of this approach.

(a)

(b)

Figure 3.10: Macroscopic stress-strain response for unloading-reloading technique ap-
plied to (a) elasto-plastically deformed specimen, and (b) elastically de-
formed specimen, for initializing the size dependent GND density in a mi-
crostructure.
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(a)

(b)

Figure 3.11: Distribution of maximum slip system resistance due to GND amongst all the
slip systems after unloading for the bicrystal with grains having 45◦ and 0◦

Euler angles. (a) Contour, and (b) line plot along (0, L2/2) to (L1, L2/2).

3.7 Hall-Petch Effect in Bicrystal

It is well established that the materials having smaller grains have higher strength com-

pared to those with larger grain size. Various processing methods in which the grain size

can be controlled by controlling the cooling time and mechanical working, use this char-

acteristic to tailor material mechanical properties. As discussed in Chapter 1, movements

of dislocations cause plastic deformation and obstructions offered to the motion of these

dislocations results in strengthening of the material. The GB regions have distinctly dif-
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ferent behavior compared to the grain interior regions which results in development of

plastic strain gradient near these regions. The gradient of plastic strain can be accom-

modated through the development of GND, which can further increase the slip system

resistance near the GB region. For the microstructure with smaller grain size, the effect

of the increased slip system resistances due to GND influences a relatively larger vol-

ume of the material than for larger grains. Thus, the GBs induce strengthening effect by

disrupting the motion of dislocations resulting in the well known Hall-Petch behaviour

[11; 12].

The Hall-Petch relation expresses the yield strength of a material with the grain diam-

eter (D) following

σy = σ0 +
K√
D

(3.1)

where σy and D represent the yield stress and grain diameter of material respectively, and

σ0 and K are constants. To verify the effect of grain size on macroscopic yield stress a

bicrystal problem as described in Section 3.1 is chosen. The set of Euler angle is chosen as

45◦ and 0◦, which is shown schematically in Figure 3.12. The three set of grain diameters

(D) chosen to verify the Hall-Petch effect are 50µm, 100µm and 150µm. The thickness

of GB region is taken as 2% of the grain diameter for which the convergence is verified in

Section 3.3.1.

Figure 3.12: Bicrystal microstructure used for verifying the Hall-Petch effect. In the
bicrystal the Euler angle of the left grain = 45◦ and the Euler angle of the
right grain = 0◦.

Figure 3.13(a) shows the effect of grain size on the macroscopic stress-strain response.

For D = 50µm we are getting the highest yield stress and hardening slope followed by

that for D = 100µm and D = 150µm respectively. To verify that the grain size de-
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pendence of yield stress follows Hall-Petch relation (Equation (3.1)), the yield stress (σy)

at three different strain offset levels is plotted against 1/
√
D in Figure 3.13(b). It gives

a linear fit with the slope representing the constant K of Hall-Petch relation. From this

figure we can conclude that the Hall-Petch slope increases with the increasing strain level

because of the stronger strain hardening effect induced by the piled-up dislocations. The

calculated Hall-Petch constants at three different strain levels are presented in Table 3.2.

Here the 0.03% corresponds to first yield region which the model is able to capture be-

cause of the unloading-reloading technique discussed in Section 3.6.

(a)
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(b)

Figure 3.13: Effect of grain size on yield stress of the material. (a) Macroscopic stress-
strain response for three different grain sizes; (b) Hall-Petch slope at three
different strain levels.

Table 3.2: Hall-Petch slopes at three different strain levels for a bicrystal with 45◦ mis-
orienatation.

Strain level K (MPa m0.5)

0.03% 0.035

0.2% 0.048

1% 0.095

3.7.1 Spatial Variation of CPFEM Variables under Bicrystal Defor-

mation

For better understanding of the working mechanism of GB model presented in this work,

some of the local response parameters including accumulated slip, slip system resistance,

components of plastic strain and stresses are elaborated below using contours and vari-

ation across the crystal on a horizontal line passing through center of the crystal. In
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reference to Figure 3.1 the end point coordinates of this line can be described as (0, L2/2)

and (L1, L2/2). Hereafter the line will be referred as A-B.

Accumulated slip

Figure 3.14 shows the variation of maximum accumulated slip amongst all the slip sys-

tems on A-B at 1% strain level. Here accumulated slip is defined as

γα
a =

∫
γ̇α dt (3.2)

Where γα
a and γ̇α are the accumulated slip and slip rate on a slip system α. We can clearly

see in the figure shown below, that the gamma accumulated values are higher for 45◦

grain as compared to that for 0◦ grain. Moreover, these values get their minimum in the

GB region because dislocation motion is difficult in this region.

(a)
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(b)

Figure 3.14: Variation of accumulated slip on the slip system having the maximum value
for a bicrystal with Euler angle of left grain = 45◦ and Euler angle of right
grain = 0◦ at applied uniaxial strain of 1%. (a) Contour plot and (b) variation
on a line (0, L2/2) to (L1, L2/2).

The accumulated slip on individual slip systems is shown in Figure 3.15. From the

figure we can see that some of the slip system are having significant activation while some

of them remain inactive; for example the 3rd and 7th are the most activated slip systems

in 45◦ grain while the 2rd and 6th are the most activated slip systems for 0◦ grain . The

1st and 5th slip systems remain almost inactive. The spike appearing in the GB region for

the 5th slip system is because of transmitted slip.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.15: Variation of accumulated slip on individual slip systems for a bicrystal with
Euler angle of left grain = 45◦ and Euler angle of right grain = 0◦. (a) to (h)
represent the eight slip systems of the grains.
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Slip System Resistance

The contour and line plots shown below are the variations of slip resistance caused be-

cause of SSDs, GNDs and their cumulative effect. The values maximum of all the slip

system is used to obtain the contour and line plots. From Figure 3.16, we can clearly see

that GNDs mainly evolve near the GB region. This is so, because the gradient of plastic

deformation calculate from Equation (2.16) is significant only near the GB region. In the

grain interior region the plastic deformation is nearly homogeneous and hence the slip

resistance caused by GNDs is almost zero.

(a)

(b)

Figure 3.16: Variation of maximum GND based slip system resistance amongst all the
slip systems at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along (0, L2/2) to (L1,
L2/2).
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The SSDs mainly evolve in the grain interiors where the motion of dislocations is easy

when compared to the GB region as discussed in Chapter 1. In the model this behavior

is incorporated by the use of additional energy penalty term in Equation (2.21). Due to

the additional energy penalty, the slip rate is reduced in the GB which in turn reduces the

evolution rate of the SSD caused slip system resistance (see Figure 3.17). The level of the

slip resistance due to SSDs is different for the two grains depending upon their orientation

which modifies the slip rates in them.

(a)

(b)

Figure 3.17: Variation of maximum SSD based slip system resistance amongst all the slip
systems at 1 % applied strain for the bicrystal with grains having 45◦ and 0◦

Euler angles. (a) Contour, and (b) line plot along (0, L2/2) to (L1, L2/2).
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Figure 3.18 shows the variation of the maximum total slip system resistance amongst

all the slip systems at a material point and is the cumulative effect of the slip system

resistances offered by the SSDs and the GNDs. The total slip system resistance controls

the rate of slip on the system and is governed by Equation (2.10). The effect of SSDs

and GNDs can be distinctly verified in the plots shown in Figure 3.18. The difference in

the level of maximum total slip system resistance in the two grain interior regions is the

due to the SSDs while the peak on the two sides of GB region is induced by the effect of

GNDs.

(a)

(b)

Figure 3.18: Variation of maximum total lip system resistance amongst all the slip sys-
tems at 1 % applied strain for the bicrystal with grains having 45◦ and 0◦

Euler angles. (a) Contour, and (b) line plot along (0, L2/2) to (L1, L2/2).
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Dislocation Density

The term dislocation density is defined as the total number dislocation present per unit

area or the total length of dislocation line per unit volume. Slip resistance (g) is related to

dislocation density (ρ) as following

g = cG b
√
ρ (3.3)

where G represents the shear modulus, b is the magnitude of Burgers vector and c is some

constant [13]. By using this equation, the GND and SSD densities can be calculated from

the corresponding slip system resistances. The variation of maximum GND density is

shown below in the Figure 3.19. In thr figure we can see that the GND density is almost

zero in the grain interiors because the plastic deformation is nearly homogeneous in these

regions. However in the near GB region the GND density has significantly evolved.

(a)
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(b)

Figure 3.19: Variation of maximum GND density amongst all the slip systems at 1 %
applied strain for the bicrystal with grains having 45◦ and 0◦ Euler angles.
(a) Contour, and (b) line plot along (0, L2/2) to (L1, L2/2).

Figure 3.20 shows the variation of maximum SSD density amongst all the slip systems

at 1% applied strain. Here we can see that the SSDs have evolved in significantly in the

grain interior regions where the motion of dislocations is easy and intensive. However, it

can also be seen that the applied energy penalty in the GB region reduces the slip rate and

hence reduces the evolution of SSD density in the GB region.

(a)
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(b)

Figure 3.20: Variation of maximum SSD density amongst all the slip systems at 1 % ap-
plied strain for the bicrystal with grains having 45◦ and 0◦ Euler angles. (a)
Contour, and (b) line plot along (0, L2/2) to (L1, L2/2).

Components of Plastic Strain:

Variation of the four components of plastic strain for the 2D plane strain problem de-

scribed in Section 3.1 are shown in Figures 3.21 to 3.24. The out of plane shear and

normal strain components vanish for the chosen problem. For the applied uniaxial tensile

deformation and the chosen reduced slip systems as described in Section 3.2, the planer

shear strain component of the plastic strain (ϵp12) is also very small compared to the normal

in-plane plastic strain components ϵp22 and ϵp11. The component ϵp22 is the applied plastic

strain in the loading direction for which we are getting a corresponding lateral strain of op-

posite nature ϵp11 so that the volume of the specimen remains conserved. Moreover, from

the distribution of ϵp22 we can see that the GB region has the least plastic strain value. This

can be physically understood from that fact the motion of dislocation in the GB region

is difficult as compared to grain interior regions. In the formulation it is incorporated in

Equation (2.21), where the applied energy penalty reduces the slip rate in the GB region.

The two grains have different levels of plastic strains (nearly uniform throughout the grain

interior region) depending upon their orientations which modifies the respective slip rates.
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(a)

(b)

Figure 3.21: Variation of ϵp11 at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along line A-B.

(a)
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(b)

Figure 3.22: Variation of ϵp22 at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along line A-B.

(a)

(b)

Figure 3.23: Variation of ϵp33 at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along line A-B.
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(a)

(b)

Figure 3.24: Variation of ϵp12 at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along line A-B.

Components of Stress

The variation of the four components of stresses are shown in Figures 3.21 to 3.24 for the

2D plane strain problem described in Section 3.1. The variation these stress components

can be explained in reference with the plastic strain components, boundary conditions and

loading direction. The two out of plane shear stress components vanish as there are no out

of plane shear strain. Moreover, we have seen in the Figure 3.24 that the in plane shear

strain component is also very small for the applied loading and hence the planer shear

stress component is also very small. The applied boundary conditions are described in

Section 3.1 from which we can see that the both left and right faces of the domain are left
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as free surfaces and therefore to maintain the stress equilibrium in 11 direction, the lateral

normal stress component S11 gets balanced to a nearly zero value. S22 and S33 are having

significant values.

(a)

(b)

Figure 3.25: Variation of σ11 at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along (0, L2/2) to (L1,
L2/2).
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(a)

(b)

Figure 3.26: Variation of σ22 at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along (0, L2/2) to (L1,
L2/2).
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(a)

(b)

Figure 3.27: Variation of σ33 at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along (0, L2/2) to (L1,
L2/2).
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(a)

(b)

Figure 3.28: Variation of σ12 at 1 % applied strain for the bicrystal with grains having 45◦

and 0◦ Euler angles. (a) Contour, and (b) line plot along (0, L2/2) to (L1,
L2/2).

3.8 Effect of Misorientation of Grains on Hall-Petch Be-

havior

Depending upon the misorientation of neighbouring grains the GBs are classified as low

and and high angle GBs. The high angle GBs offer higher resistance for penetration events

across the interface [29]. In our model this effect is brought through the calculation of
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energy penalty based on misalignment of slip systems. It is hypothesized that the QGB

calculated from Equation (2.33) will be higher for GBs with higher misorientation. To

find the effect of misorientation on Hall-Petch constants, we consider two bicrystals with

misorientations of 30◦ and 15◦. The schematic of the two cases is shown in Figure 3.29.

For both these cases, three different grain sizes 50µm, 75µm and 150µm are considered.

The thickness of GB region is taken as 2% of the grain diameter based on the study in

Section 3.3.1.

(a) (b)

Figure 3.29: Bicrystal microstructures to evaluate the influence of misorientation on Hall-
Petch behavior. (a) Grains having Euler angles of 30◦ and 0◦, and (b) Grains
having Euler angles of 15◦ and 0◦.

The macroscopic stress-strain responses for the different misorientations and grain

sizes are plotted in Figure 3.30(a). The figure shows that the case with 30◦ misorientation

has higher initial yield stress as well as higher hardening slope when compared with that

for 15◦ misorientation. Such difference in the response of the two cases is caused by

combined orientation and misorientation effect. The change in the initial yield stress is

brought in because of the change in slip resistance caused by SSDs while the difference

in hardening is caused due to change in slip resistance cause by GNDs because the two

cases have different misorentation resulting is different gradient in plastic deformation.

The effect of misorientation on Hall-Petch parameters are evident from Figure 3.30

which shows that the Hall-Petch constant (K) is higher for larger misorientation at all

values of applied strain. The calculated Hall-Petch constants are presented in Table 3.3.
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(a)

(b)

Figure 3.30: Misorientation effect in bicrystal. (a) Macroscopic stress vs strain for three
grain sizes and (b) Variation of yield stress with grain size highlighting Hall-
Petch behavior.
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Table 3.3: Effect of misorientation of grains on Hall-Petch behaviour.

Euler angle Strain level σ0 (MPa) K (MPa m0.5)

30◦ − 0◦ 0.2% 11.15 0.038

30◦ − 0◦ 1% 14 0.06

15◦ − 0◦ 0.2% 7.9 0.015

15◦ − 0◦ 1% 9 0.025

3.9 Effect of Energy Penalty Evolution

The effective barrier offered by GBs for dislocation transmission increases with accumu-

lated dislocations as discussed in Section 2.3. This can be modeled by increasing the

energy penalty of a slip system for slip transmission across GBs (Equation (2.23) with

accumulated slip on that system. This evolved energy penalty results in development of

higher plastic strain gradient and hence higher slip resistance offered by GNDs. The ef-

fect of this energy penalty evolution on macroscopic response is shown in Figure 3.31, in

which a higher strain hardening behavior can be observed when the evolution for energy

penalty is taken into consideration.
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Figure 3.31: Effect of energy penalty evolution on macroscopic response.

The evolution of effective energy penalty for the first two slip systems of 45◦ grain is

shown in Figure 3.32. It can be seen from Figure 3.32 (a) that the evolution of effective

Qeff
GB on 1st slip system is minimal and is due to near zero slip activity on this system. On

the contrary, slip system 2 shows significant evolution of Qeff
GB and is due to significant

slip activity on this system. The variation of slip activities on theses two slip systems have

already been presented in Section 3.7.1.

(a) (b)

Figure 3.32: Evolution of energy penalty for individual slip systems of 45◦ − 0◦ bicrystal.
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The use of an evolving energy penalty model signifies that the transmissibility across

GBs reduce with deformation and finally the dislocations are unable to travel to any en-

ergetically favorable slip system of the neighboring grains. Most of the earlier models

assumed the transmission-less behavior to develop the size dependent models. However,

such an assumption leads to a higher yield stress as evident from Figure 3.31. Thus, the

incorporation of dislocation transmission across GBs needs to be considered to obtain

physically realistic size dependent crystal plasticity models.
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Hall-Petch Effect in Polycrystals

The effect of grain size on the macroscopic elasto-plastic behaviour is already verified

for the bicrystal problems using three different misoreintations in Sections (3.2 and 3.8).

Polycrystals have certain added complications, where several number of grains are ran-

domly oriented resulting in number of interface regions having different misorientations.

Depending upon their orientation, the grains also show preferential yielding where some

of the grains are yielded before others. Moreover, unlike bicrystal the internal grains of

a polycrystal are surrounded by GBs on all the sides hence the plastic strain gradients

developed in all the directions and affect the elasto plastic deformation behaviour. In

this chapter, the Hall-Petch effect is verified for a 16 grain polycrystal and the evolution

of slip system resistances, stress and strain components are discussed for uniaxial plane

strain problem.

4.1 Model Description

The polycrystal specimen having 16 grains is subjected to uniaxial plane strain tensile

deformation. The macroscopic boundary conditions are kept the same as those for the

bicrystal problem described in Section 3.1. The thickness of the GB region is kept as

2% of the grain size. The four grain sizes chosen for verifying the Hall-Petch effect are

25µm, 50µm, 75µm and 100µm. The Euler angles for the 16 grains are randomly se-

lected ranging from 0◦ to 45◦. The spatial distribution of Euler angles are presented in

Figure 4.1 (a) in which the color bar shown represents the Euler angle of that specific

grain. Figure 4.1 (b) shows a schematic representation of FEM mesh and GB regions sep-

arating the grain interiors. Using this figure we can express L = 4D+3WGB, where L, D

and WGB represent the size of domain, grain size and width of GB region respectively.



CHAPTER 4. HALL-PETCH EFFECT IN POLYCRYSTALS 69

(a)

(b)

Figure 4.1: (a) Distribution of Euler angles in the polycrystalline domain. (b) Geometrical
parameters of the polycrystal domain and FEM mesh.



CHAPTER 4. HALL-PETCH EFFECT IN POLYCRYSTALS 70

4.2 Verification of Hall-Petch Effect

The polycrystal domain corresponding to the four different grain sizes, are uniaxially

deformed up to 0.5% strain. The macroscopic stress-strain responses for the different

grain diameters are shown in Figure 4.2 (a). The macroscopic stresses are plotted against

the inverse of square root of grain sizes in Figure 4.2 (b).

(a)

(b)

Figure 4.2: (a) Macroscopic stress strain response on the polycrystal for four different
grain sizes. (b) Variation of yield stress with grain size highlighting Hall-
Petch behavior.
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From the above figures we can easily visualize the grain size effect and the increase

of Hall-Petch slope when the strain level is increased from 0.2% to 0.5%. The calculated

Hall-Petch constants are presented in Table 4.2.

Table 4.1: Hall-Petch constants for 16 grain polycrystal

Strain level σ0 (MPa) K (MPa m0.5)

0.2% 8.43 0.0155

0.5% 10.5 0.035

4.3 Spatial Variation of CPFEM Variables under Poly-

crystal Deformation

In this section some of the important characteristics of the polycrystalline deformation is

discussed using various contour plots. The dotted lines are plotted to identify the bound-

aries of the grains.

4.3.1 Slip System Resistance Components

Figures 4.3 (a), (b) and (c) shows the contours of slip system resistance because of SSDs,

GNDs and the total slip system resistance respectively. Here we can see that the SSDs

are mainly evolved in the grain interior regions depending upon their orientation. We can

also visualize the blue strips of lower gSSDs values in the GB region due to the rate of

shear getting penalized in this region with extra energy penalty as discussed in Chapter 2.

While in contrast to SSDs, the GNDs are mainly concentrated in near GB region caused

by stronger plastic strain gradient. The GNDs are having smaller values in the grain

interior regions which are governed by homogeneous plastic deformation. The total slip

system resistance is shown to have the combined effect of SSDs and GNDs in which the

values in grain interior regions is defined by grain orientation controlled by SSDs while in

near GB region it is dependent on misorientation across interfaces controlled by GNDs.
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(a)

(b)
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(c)

Figure 4.3: Spatial distribution of maximum slip system resistance amongst all the slip
systems at applied strain of 0.5%. (a) gSSD, (b) gGND, and (c) total slip resis-
tance.

4.3.2 Components of Plastic Strain

Figures 4.4 (a), (b), (c) and (d) shows the contours of plastic strain components ϵP11, ϵ
P
22, ϵ

P
33

and ϵP12 respectively. We can verify that the ϵP33 is small, due to plane stain condition.

Moreover depending upon the loading condition i.e. uniaxial tensile deformation the

shear strain component is also ϵP12 small. Here ϵP22 is dominant strain component since the

polycrystal domain is deformed in the 22 direction. The contours also show that the grains

with higher euler angle have undergone lesser plastic deformation. The compressive strain

ϵP11 is appearing because of the lateral deformation to satisfy the isochoric condition of

plastic flow.



CHAPTER 4. HALL-PETCH EFFECT IN POLYCRYSTALS 74

(a)

(b)
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(c)

(d)

Figure 4.4: Spatial distribution of components of plastic strain (a) ϵp11, (b) ϵp22, (c) ϵp33 and
(d) ϵp12 for uniaxial plane strain deformation of polycrystal at applied strain of
0.5%.
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4.3.3 Components of Stress

The four stress components of stresses σ11, σ22, σ33 and σ12 are shown below in Figure 4.5.

Since the shear strain component of plastic strain was shown to be very small in previ-

ous section (see Figure 4.4 (d)) , the σ12 component also appears to be small. Moreover,

by the applied macroscopic boundary conditions described in Section 3.1, both left and

right faces of domain are free surface therefore to maintain the stress equilibrium in 11

direction, the σ11 components gets balanced to a nearly zero value. σ22 and σ33 are having

significant values resulting from ϵe22 and ϵe33 component of elastic strain.

(a)
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(b)

(c)
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(d)

Figure 4.5: Spatial distribution of components of Cauchy stress (a) σ11, (b) σ22, (c) σ33

and (d) σ12 for uniaxial plane strain deformation of polycrystal at applied
strain of 0.5%.

4.4 Orientation Dependent Yielding of Grains in a Poly-

crystal

As we have discussed in the beginning of this chapter, the various grains in a polycrystal

start yielding in a selective sequential pattern depending upon their orientation. To demon-

strate this, the contours of ϵP22 are shown at different strain levels viz. 0.01%, 0.05%, 0.1%

and 0.3% in Figure 4.6. From these contours we can visualize that for 0.01% strain none

of the grains have yielded, while when reaching at 0.05% the grains with preferential ori-

entations have slowly started yielding. At 0.1% more number of grains appear to be start

yielding while at 0.3% almost all the grains have yielded by some amount.
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(a) ϵP22 at 0.01% strain

(b) ϵP22 at 0.05% strain
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(c) ϵP22 at 0.1% strain

(d) ϵP22 at 0.3% strain

Figure 4.6: Orientation dependent yielding of grains.
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4.5 Discussion of Experimentally Observed Hall-Petch Ef-

fect

The effect of grain size on the elasto-plastic deformation behaviour of metallic alloys is

experimentally verified in many of the references available in the literature. The material

parameters chosen in this work are for annealed aluminum. Z.N Farhat et al. [21] have

reviewed the various experimental studies of Hall-Petch effect on aluminum with varying

impurity level and range of grain diameters. The table shown below is taken from [21] in

which they have provided the citations for individual studies.

Table 4.2: Comparision of Hall-Petch parameters for Aluminum

Material σ0 (MPa) K (MPa m0.5) Grain size(µm)

99.97%Al 15.0 0.07 20− 150

99.999%Al 15.5 0.04 150− 250

99.99%Al 22.4 0.07 30− 100

1100Al 14.3 0.07 20− 200

Al − 6%Ni 11.0 0.14 0.5− 20

The table shows that the value of the Hall-Petch slope for Aluminum alloys varies

from 0.04 MPam0.5 to 0.07 MPam0.5, depending upon composition and range of grain

sizes. N.Hansen et al. [20] have verified experimentally that the Hall- Petch slope in-

creases with increasing strain level. The Hall-Petch slope obtained in our simulation for

the polycrystal is of the range 0.035 MPam0.5 at 0.5% strain which alos increases with

the increasing strain level. The value is close to the experimentally observed range of

values. Similarly the Hall-Petch slope from our bicrystal simulations typically varied

from 0.025 MPam0.5 for smaller misorientation of grains to 0.95 MPam0.5 for high

misorentation. The polycrytals simulation showed an intermediate value when compared

with bicrystal results because in the polycrystal domain a mix of low and high misori-

ented grains are present. Therefore, we can verify that the results of simulations are close
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to experimentally observed data. However, the accuracy of simulation results can still be

improved by calibrating various modelling parameters.



CHAPTER 5

Conclusion and Future Scope

5.1 Conclusion

CPFEM based diffused interface model including the GB physics to study the polycrystal

micro-mechanics is developed in this thesis. An improvement is made to the conventional

sharp or stepped interface representation of the interface region by introducing a finitely

thick GB region which incorporates the properties of all the adjoining grains. A modified

flow rule is developed to incorporate the GB dislocation interaction mechanism. A slip

transmission model has been developed considering a triple point and is schematically

elaborated. The distribution of slip rate between the slip system of various constituent

grains in GB region resulting from dislocation transmission across the GB is shown and

discussed. The GB barrier is modelled by introducing an extra energy penalty term in

the slip rate equation. This energy penalty is based is minimizing the remnant dislocation

line on GB for incoming and outgoing slip systems. The energy penalty is also allowed

to evolve with accumulated slip which models the change in characteristics of GB region

due to increased concentration of dislocation debris left behind during slip transmission

events across GBs. For capturing the plastic strain gradient developed because of the GBs

and prevent lattice compatibility GNDs are also incorporated in the model in addition

to the SSDs. The slip resistance caused by GNDs is calculated in terms of Nye dislo-

cation density tensor. The numerical technique to calculate the Nye tensor and CPFEM

implementation of the model is also presented. The actual three dimensional slip systems

of a FCC crystal are reduced to 8 pseudo slip systems for analysing the problem in two

dimensional plane strain.

The model is used to perform various case studies of bicrystal and polycrystal domains

subjected to uniaxial plane strain tensile deformation. Model parameters for getting ac-

curate results are determined using various convergence studies. The mesh sensitivity
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analysis shows that the macroscopic stress-strain responses are almost converged for the

elements size less than or equal to 1µm × 1µm. The converged time step size which

produces accurate results with minimal computational effort is found to be less than or

equal to 0.001second. From the convergence study performed for determining the opti-

mal physical GB thickness of GB region, it is concluded that the macroscopic responses

are almost converged if the chosen thickness of GB region is less than or equal to 2% of

grain diameter.

The independence of GB resistance to relative orientation of grains is verified by

analysing the results of the case study where the spatial distribution of grains is varied

keeping the relative misorientation to be constant. The single crystal effect is also verified

where it is observed that a bicrystal with zero misorientation behaves as a single crystal.

The evolution of the energy penalty has shown to produce stronger strain hardening effect.

The Hall-Petch effect is verified for the bicrystal problem, which shows that crystals have

smaller grain size have higher yield strength. Moreover, it is also observed that higher

misorientation between the grains across GB produces higher strain hardening slope. The

obtained Hall-Petch slope also increases with the strain. The variation of various local re-

sponse parameters is also presented using contour and line plots. It is observed that SSDs

mainly evolve in the grain interior regions where the motion of dislocations is easy and

intensive. However, the GNDs are concentrated in the near GB region due to the gradient

of plastic strain developed by the GBs. The variation of accumulated slip for individual

slip systems of a bicrystal is studied which shows that some of the slip systems are getting

activated while a few of them remain inactive during the deformation process. From the

contour and line plots of various stress and plastic strain components, it is observed that

the GB region have smaller plastic deformation compared to grain interiors resulting in

stress concentration in the near GB region.

Orientation dependent yielding of grains in polycrystals is observed which shows that

depending upon their orientations various grains of a polycrytal yield progressively. The

dependence of polcrystal yield strength on grain size is observed to follow the Hall-Petch

behaviour. Moreover, the evaluated Hall-Ptech slope increases with increasing strain

level. The local variation of slip system resistance shows that the deformation behaviour
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in the grain interior regions is controlled by SSDs while the influence of GNDs in concen-

trated in the near GB region. The comparison of obtained simulation results with the ex-

perimental observation in literature shows that the model is able to capture the Hall-Petch

behaviour in polycrystals with good accuracy. However, various modelling parameters

can be better calibrated to match with the experimental results.

5.2 Scope of Future Work

The current work can be extended in future in the below mentioned possible ways

• Executing polycrystal simulations with uniform mesh becomes computationally in-
efficient. Developing a biased meshing technique can significantly reduce the sim-
ulation time.

• Two-dimensional computations may predict a too simplified material response that
is far from the actual crystal behavior. Therefore, the model should be extended to
3D for capturing realistic deformation behavior in crystals.

• The grain boundary model can be improved by checking the direction of dislocation
motion to ensure that the energy penalty is applied only for the dislocations moving
towards the GB.

• The developed CPFEM model should be implemented in Umat to use it with com-
mercial simulation softwares.
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